首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15745篇
  免费   2930篇
  国内免费   5441篇
化学   12136篇
晶体学   565篇
力学   1108篇
综合类   680篇
数学   2211篇
物理学   7416篇
  2024年   23篇
  2023年   160篇
  2022年   515篇
  2021年   494篇
  2020年   536篇
  2019年   487篇
  2018年   499篇
  2017年   725篇
  2016年   563篇
  2015年   734篇
  2014年   939篇
  2013年   1216篇
  2012年   1255篇
  2011年   1288篇
  2010年   1225篇
  2009年   1332篇
  2008年   1570篇
  2007年   1366篇
  2006年   1292篇
  2005年   1215篇
  2004年   992篇
  2003年   708篇
  2002年   751篇
  2001年   635篇
  2000年   725篇
  1999年   530篇
  1998年   270篇
  1997年   204篇
  1996年   192篇
  1995年   188篇
  1994年   179篇
  1993年   189篇
  1992年   159篇
  1991年   115篇
  1990年   112篇
  1989年   134篇
  1988年   104篇
  1987年   88篇
  1986年   63篇
  1985年   46篇
  1984年   57篇
  1983年   39篇
  1982年   36篇
  1981年   35篇
  1980年   27篇
  1979年   18篇
  1978年   6篇
  1974年   7篇
  1965年   20篇
  1964年   10篇
排序方式: 共有10000条查询结果,搜索用时 18 毫秒
991.
采用水热法合成了一种高结晶度的3D树枝状C/PbWO4复合光催化剂(其中碳的质量分数分别为0.13%、0.26%、0.52%、0.78%)。应用X射线衍射、N2物理吸附、扫描电子显微镜、透射电子显微镜、能量色散X射线光谱、紫外可见漫反射光谱、光致发光光谱和光电流响应等手段对合成样品进行了表征。研究结果表明,当C的复合量为0.52%时,催化剂在降解偶氮染料酸性橙Ⅱ、甲基橙和罗丹明B呈现出最高的光催化活性,在光照100 min内对20 mg·L-1酸性橙Ⅱ的降解率达到97%,为纯PbWO4的2.48倍。C/PbWO4复合光催化剂活性提高的主要原因是掺杂在催化剂表面的C成为了电子俘获中心,有效俘获光生电子,促进光生电子和空穴分离的显著效果,从而产生更多活性物种(·OH、h+)参与染料分子的降解,提升光催化活性。  相似文献   
992.
以功能化氮配体为导向,以4,7-二苯基-1,10-菲咯啉为原料,经季铵化、氧化、卤化和醚化合成了一类新型的2,9-二烷氧基-4,7-二苯基-1,10-菲咯啉配体5a~5e。再以Xantphos为膦配体,通过原位配位方法合成一系列氮磷杂配铜光敏剂(CuPS A~H),在均相光解水制氢体系中研究其光敏活性。制氢结果表明,以2,9-二乙氧基为较佳取代基,CuPS D的催化产氢总转换数(TON)可达270。在光电物理性能分析中,发现这类杂配铜配合物都有一个相似的氧化还原电位(Eoxd=-0.8 V,Ered=-1.2 V)。具有乙氧取代基的铜配合物CuPS D相对于其他取代基的铜基配合物,荧光最弱,表明乙氧基有助于提高荧光淬灭效率,增强铜光敏剂的光化学转换能力。  相似文献   
993.
以乙二醇为溶剂,采用溶剂热法一步合成圆饼状LiFePO4,然后以葡萄糖为碳源与合成的LiFePO4前躯体高温烧结得到碳包覆的LiFePO4/C复合材料,其振实密度高达1.3 g·cm-3。采用X射线衍射(XRD)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)对LiFePO4/C复合材料进行了物相和形貌表征,研究结果表明制备得到的LiFePO4呈圆饼状,且生成的圆饼是由单晶LiFePO4纳米片堆积而成。此外,LiFePO4颗粒表面碳层包覆均匀。将制备的LiFePO4/C用作锂离子电池正极材料,电化学性能测试表明其具有高的充放电比容量(在0.1C时放电,其初始放电比容量为157.7 mAh·g-1)与良好的循环性能(500次循环后容量保持率为82.4%)。  相似文献   
994.
锂硫电池膨胀氧化石墨/硫复合正极材料的制备及其性能   总被引:2,自引:2,他引:0  
以棒状石墨为原料,采用改良的Hummers法与热处理制备得到膨胀氧化石墨(E-GO),利用在酸性水溶液中归中化学反应的方法合成纳米尺寸的硫颗粒,使其嵌入到膨胀氧化石墨的内部,制备了膨胀氧化石墨-硫复合材料。采用红外光谱,X-射线光电子能谱表征了膨胀氧化石墨表面官能团的存在和种类;X-射线衍射分析结果表明生成的硫属于斜方晶结构;扫描电子显微镜和透射电镜分析证明了材料中硫的均匀分布。恒电流充放电结果表明该复合正极材料的首次放电容量为1 020 mAh.g-1,100周循环之后其容量还保持在650 mAh.g-1左右;材料的倍率性能和库伦效率优异,这可能得益于小尺寸的硫在材料中均匀分布,以及表面官能团对硫的固定化作用。  相似文献   
995.
通过控制丝素蛋白自组装过程制备了溶液状态下的丝素纳米纤维(silk fibroin nanofibers,SFFs),与硫酸钙、万古霉素(vancomycin,VCM)复合,制备了VCM/CS/SFFs抗菌骨材料。通过SEM、XRD、紫外分光光度计、万能力学试验机、抑菌圈、MTT等手段分别研究了复合材料的微观形貌与结构、药物释放、力学、抑菌及细胞相容性等性能。结果显示,与水作为固化液相比,随着SFFs溶液(0.017 5~2.1 mg·mL-1)的加入,复合材料凝固时间可控,降解率逐渐降低,抗水性增强,韧性提高;同时随丝素纳米纤维含量的增加骨材料抗压强度表现为先增加后减小的趋势,一周内药物释放速率降低;材料同时具有抑菌作用;MTT实验结果显示,加入丝素纳米纤维后与纯的硫酸钙相比MC3T3细胞增殖明显。  相似文献   
996.
通过控制结晶法制备类球形Ni0.9Co0.05Al0.03Zr0.02(OH)2前驱体,与LiOH·H2O均匀混合后,在750℃下于氧气中进行高温焙烧,最终合成正极材料Li(Ni0.9Co0.05Al0.03Zr0.02)O2。扫描电子显微镜(SEM)结果显示前驱体及正极材料具有良好的形貌;X射线衍射(XRD)表明材料具有规整的六方单相层状α-NaFeO2结构;能谱仪(EDXS)分析表明Zr元素在材料颗粒内部呈均匀分布。合成的LiNi0.9Co0.05Al0.03Zr0.02O2正极材料具有良好的电化学性能,在25℃,2.8~4.3 V充放电条件下,0.2C首次放电比容量为221.5 mAh·g-1,充放电效率90.3%,2C倍率充放电条件下容量仍达到192.7 mAh·g-1,100周循环后的容量保持率为92.2%。在55℃,2.8~4.3 V的高温充放电条件下,该材料的0.2C首次放电比容量可达236.2 mAh·g-1,2C充放电倍率下循环100周容量保持率为85.1%。  相似文献   
997.
以Mg-Al-NO3水滑石(LDHs)为载体,将5-氟尿嘧啶(5-FU)通过离子交换法插入其层间,得5-FU/LDHs缓释材料。并对水滑石表面进行弱酸预处理改性,利用XRD、FTIR、TG-DSC、SEM和零电荷点(pHPZC)等表征手段,考察酸预处理对水滑石表面化学性质及微观结构的影响。结果表明,5-FU/LDHs的层间距从0.858nm扩大到1.064nm,层间5-FU2阴离子与主体层板通过氢键与静电作用,以呈一定角度单层交替排列于层间。酸预处理的水滑石粒径变小,层板正电荷密度增大。5-FU的释放机理是物理扩散、离子交换和药物溶解等协同作用,酸预处理可提高水滑石的缓释性能和稳定性。  相似文献   
998.
水热条件下,合成了1个铜(Ⅱ)配位聚合物[Cu(L)(4,4’-bpy)(HCOO)(H2O)]n(HL=苯并三氮唑-1-氧基乙酸,4,4’-bpy=4,4’-联吡啶),并通过元素分析、红外光谱,热重分析,X-射线粉末衍射和X-射线单晶衍射对其进行了表征。晶体结构表明,配合物属三斜晶系,空间群P1,晶胞参数:a=0.82026(16)nm,b=1.1283(2)nm,c=1.1597(2)nm,α=76.50(3)°,β=70.88(3)°,γ=76.97(3)°,V=0.9730(3)nm3,Z=2。铜(Ⅱ)分别与来自2个4,4’-bipy的2个氮原子、1个苯并三氮唑-1-氧基乙酸的1个氧原子、1个甲酸根中1个氧原子和1个水分子中的1个氧原子配位,形成变形的四方锥的配位构型。由于4,4’-bipy的桥联作用,配合物在空间形成了一维链状结构,该一维链又通过分子间O-H…N和分子内O-H…O氢键作用形成了二维层状结构。  相似文献   
999.
共沉淀法制备了Ru-Zn催化剂,考察了反应修饰剂ZnSO4和预处理对苯选择加氢制环己烯Ru-Zn催化剂性能的影响。结果表明,反应修饰剂ZnSO4可以与Ru-Zn催化剂中助剂ZnO反应生成(Zn(OH)23(ZnSO4)(H2O)盐。随反应修饰剂ZnSO4浓度增加,(Zn(OH)23(ZnSO4)(H2O)盐量的逐渐增加,Ru-Zn催化剂活性逐渐降低,环己烯选择性逐渐升高。因为(Zn(OH)23(ZnSO4)(H2O)盐中的Zn2+可以使Ru变为有利环己烯生成的缺电子的Ruδ+物种,而且还可以占据不适宜环己烯生成的强Ru活性位。但当反应修饰剂ZnSO4浓度高于0.41 mol·L-1后,继续增加ZnSO4浓度,由于Zn2+水解浆液酸性太强,可以溶解部分(Zn(OH)23(ZnSO4)(H2O)盐,Ru-Zn催化剂活性升高,环己烯选择性降低。但环己烯选择性却略微降低,这是由于ZnSO4溶液中大量的Zn2+可以与生成的环己烯形成配合物,稳定生成的环己烯,抑制生成的环己烯再吸附到催化剂表面并加氢生成环己烷。在ZnSO4最佳浓度0.61 mol·L-1下对Ru-Zn催化剂预处理15 h,Ru-Zn催化剂中助剂ZnO可以与ZnSO4完全反应生成(Zn(OH)23(ZnSO4)(H2O)盐,在该催化剂上25 min苯转化68.2%时环己烯选择性和收率分别为80.2%和54.7%。而且该催化剂具有良好的稳定性和重复使用性能。  相似文献   
1000.
近年来,二维半导体材料由于其独特的材料结构和电子输运特性得到了科学界的广泛关注,被应用于光电器件、催化和生物传感器等领域。本文系统概述了传统二维材料以及新兴二维材料石墨炔的发现和发展历程。重点聚焦在二维材料在光探测器领域中的应用,探讨了不同二维材料体系及器件结构对光探测器性能的影响;并详细介绍了新兴二维材料——石墨炔,及其合成和应用。展望了传统二维材料及石墨炔在光电转换器件的应用中所面临的机遇和挑战。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号